A Genetic Algorithm for Process Discovery Guided by Completeness, Precision and Simplicity

نویسندگان

  • Borja Vázquez-Barreiros
  • Manuel Mucientes
  • Manuel Lama
چکیده

Several process discovery algorithms have been presented in the last years. These approaches look for complete, precise and simple models. Nevertheless, none of the current proposals obtains a good integration between the three objectives and, therefore, the mined models have differences with the real models. In this paper we present a genetic algorithm (ProDiGen) with a hierarchical fitness function that takes into account completeness, precision and simplicity. Moreover, ProDiGen uses crossover and mutation operators that focus the search on those parts of the model that generate errors during the processing of the log. The proposal has been validated with 21 different logs. Furthermore, we have compared our approach with two of the state of the art algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProDiGen: Mining complete, precise and minimal structure process models with a genetic algorithm

Process discovery techniques automatically extract the real workflow of a process by analyzing the events that are collected and stored in log files. Although in the last years several process discovery algorithms have been presented, none of them guarantees to find complete, precise and simple models for all the given logs. In this paper we address the problem of process discovery through a ge...

متن کامل

A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Alg...

متن کامل

Genetic Process Mining: Alignment-Based Process Model Mutation

The Evolutionary Tree Miner (ETM) is a genetic process discovery algorithm that enables the user to guide the discovery process based on preferences with respect to four process model quality dimensions: replay fitness, precision, generalization and simplicity. Traditionally, the ETM algorithm uses random creation of process models for the initial population, as well as random mutation and cros...

متن کامل

A Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size

The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...

متن کامل

On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery

Process discovery algorithms typically aim at discovering process models from event logs that best describe the recorded behavior. Often, the quality of a process discovery algorithm is measured by quantifying to what extent the resulting model can reproduce the behavior in the log, i.e. replay fitness. At the same time, there are many other metrics that compare a model with recorded behavior i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014